\(\int \sqrt {a+a \sec (c+d x)} \tan ^2(c+d x) \, dx\) [143]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 96 \[ \int \sqrt {a+a \sec (c+d x)} \tan ^2(c+d x) \, dx=-\frac {2 \sqrt {a} \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}+\frac {2 a \tan (c+d x)}{d \sqrt {a+a \sec (c+d x)}}+\frac {2 a^2 \tan ^3(c+d x)}{3 d (a+a \sec (c+d x))^{3/2}} \]

[Out]

-2*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))*a^(1/2)/d+2*a*tan(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+2/3*a^2
*tan(d*x+c)^3/d/(a+a*sec(d*x+c))^(3/2)

Rubi [A] (verified)

Time = 0.09 (sec) , antiderivative size = 96, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {3972, 470, 327, 209} \[ \int \sqrt {a+a \sec (c+d x)} \tan ^2(c+d x) \, dx=\frac {2 a^2 \tan ^3(c+d x)}{3 d (a \sec (c+d x)+a)^{3/2}}-\frac {2 \sqrt {a} \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {2 a \tan (c+d x)}{d \sqrt {a \sec (c+d x)+a}} \]

[In]

Int[Sqrt[a + a*Sec[c + d*x]]*Tan[c + d*x]^2,x]

[Out]

(-2*Sqrt[a]*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (2*a*Tan[c + d*x])/(d*Sqrt[a + a*Sec[
c + d*x]]) + (2*a^2*Tan[c + d*x]^3)/(3*d*(a + a*Sec[c + d*x])^(3/2))

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 470

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[d*(e*x)^(m +
 1)*((a + b*x^n)^(p + 1)/(b*e*(m + n*(p + 1) + 1))), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(b*(m +
 n*(p + 1) + 1)), Int[(e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0]
 && NeQ[m + n*(p + 1) + 1, 0]

Rule 3972

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_.), x_Symbol] :> Dist[-2*(a^(m/2 +
 n + 1/2)/d), Subst[Int[x^m*((2 + a*x^2)^(m/2 + n - 1/2)/(1 + a*x^2)), x], x, Cot[c + d*x]/Sqrt[a + b*Csc[c +
d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m/2] && IntegerQ[n - 1/2]

Rubi steps \begin{align*} \text {integral}& = -\frac {\left (2 a^2\right ) \text {Subst}\left (\int \frac {x^2 \left (2+a x^2\right )}{1+a x^2} \, dx,x,-\frac {\tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d} \\ & = \frac {2 a^2 \tan ^3(c+d x)}{3 d (a+a \sec (c+d x))^{3/2}}-\frac {\left (2 a^2\right ) \text {Subst}\left (\int \frac {x^2}{1+a x^2} \, dx,x,-\frac {\tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d} \\ & = \frac {2 a \tan (c+d x)}{d \sqrt {a+a \sec (c+d x)}}+\frac {2 a^2 \tan ^3(c+d x)}{3 d (a+a \sec (c+d x))^{3/2}}+\frac {(2 a) \text {Subst}\left (\int \frac {1}{1+a x^2} \, dx,x,-\frac {\tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d} \\ & = -\frac {2 \sqrt {a} \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}+\frac {2 a \tan (c+d x)}{d \sqrt {a+a \sec (c+d x)}}+\frac {2 a^2 \tan ^3(c+d x)}{3 d (a+a \sec (c+d x))^{3/2}} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 3.48 (sec) , antiderivative size = 226, normalized size of antiderivative = 2.35 \[ \int \sqrt {a+a \sec (c+d x)} \tan ^2(c+d x) \, dx=\frac {8 \sqrt {2} \left (\frac {1}{1+\sec (c+d x)}\right )^{7/2} \sqrt {a (1+\sec (c+d x))} \left (-\frac {\cos (c+d x) (7+3 \cos (c+d x)) \csc ^4\left (\frac {1}{2} (c+d x)\right ) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \left (-3 \text {arctanh}\left (\sqrt {1-\sec (c+d x)}\right ) \cos (c+d x)+(-1+4 \cos (c+d x)) \sqrt {1-\sec (c+d x)}\right )}{24 \sqrt {1-\sec (c+d x)}}-\frac {4}{7} \operatorname {Hypergeometric2F1}\left (2,\frac {7}{2},\frac {9}{2},-2 \sec (c+d x) \sin ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sec (c+d x) \tan ^2\left (\frac {1}{2} (c+d x)\right )\right ) \tan ^3(c+d x)}{3 d \left (1-\tan ^2\left (\frac {1}{2} (c+d x)\right )\right )^{5/2}} \]

[In]

Integrate[Sqrt[a + a*Sec[c + d*x]]*Tan[c + d*x]^2,x]

[Out]

(8*Sqrt[2]*((1 + Sec[c + d*x])^(-1))^(7/2)*Sqrt[a*(1 + Sec[c + d*x])]*(-1/24*(Cos[c + d*x]*(7 + 3*Cos[c + d*x]
)*Csc[(c + d*x)/2]^4*Sec[(c + d*x)/2]^2*(-3*ArcTanh[Sqrt[1 - Sec[c + d*x]]]*Cos[c + d*x] + (-1 + 4*Cos[c + d*x
])*Sqrt[1 - Sec[c + d*x]]))/Sqrt[1 - Sec[c + d*x]] - (4*Hypergeometric2F1[2, 7/2, 9/2, -2*Sec[c + d*x]*Sin[(c
+ d*x)/2]^2]*Sec[c + d*x]*Tan[(c + d*x)/2]^2)/7)*Tan[c + d*x]^3)/(3*d*(1 - Tan[(c + d*x)/2]^2)^(5/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(185\) vs. \(2(84)=168\).

Time = 4.73 (sec) , antiderivative size = 186, normalized size of antiderivative = 1.94

method result size
default \(-\frac {\left (3 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}{\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\right ) \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right )^{\frac {3}{2}}-2 \left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}+6 \csc \left (d x +c \right )-6 \cot \left (d x +c \right )\right ) \sqrt {-\frac {2 a}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}}{3 d \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )-1\right ) \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )+1\right )}\) \(186\)

[In]

int((a+a*sec(d*x+c))^(1/2)*tan(d*x+c)^2,x,method=_RETURNVERBOSE)

[Out]

-1/3/d*(3*2^(1/2)*arctanh(2^(1/2)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*(-cot(d*x+c)+csc(d*x+c)))*((1-cos(d*
x+c))^2*csc(d*x+c)^2-1)^(3/2)-2*(1-cos(d*x+c))^3*csc(d*x+c)^3+6*csc(d*x+c)-6*cot(d*x+c))*(-2*a/((1-cos(d*x+c))
^2*csc(d*x+c)^2-1))^(1/2)/(-cot(d*x+c)+csc(d*x+c)-1)/(csc(d*x+c)-cot(d*x+c)+1)

Fricas [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 283, normalized size of antiderivative = 2.95 \[ \int \sqrt {a+a \sec (c+d x)} \tan ^2(c+d x) \, dx=\left [\frac {3 \, {\left (\cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} + 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \, \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (2 \, \cos \left (d x + c\right ) + 1\right )} \sin \left (d x + c\right )}{3 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}, \frac {2 \, {\left (3 \, {\left (\cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) + \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (2 \, \cos \left (d x + c\right ) + 1\right )} \sin \left (d x + c\right )\right )}}{3 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}\right ] \]

[In]

integrate((a+a*sec(d*x+c))^(1/2)*tan(d*x+c)^2,x, algorithm="fricas")

[Out]

[1/3*(3*(cos(d*x + c)^2 + cos(d*x + c))*sqrt(-a)*log((2*a*cos(d*x + c)^2 + 2*sqrt(-a)*sqrt((a*cos(d*x + c) + a
)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) + 2*sqrt((a*cos(d*x + c) +
 a)/cos(d*x + c))*(2*cos(d*x + c) + 1)*sin(d*x + c))/(d*cos(d*x + c)^2 + d*cos(d*x + c)), 2/3*(3*(cos(d*x + c)
^2 + cos(d*x + c))*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c)))
 + sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*(2*cos(d*x + c) + 1)*sin(d*x + c))/(d*cos(d*x + c)^2 + d*cos(d*x +
c))]

Sympy [F]

\[ \int \sqrt {a+a \sec (c+d x)} \tan ^2(c+d x) \, dx=\int \sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )} \tan ^{2}{\left (c + d x \right )}\, dx \]

[In]

integrate((a+a*sec(d*x+c))**(1/2)*tan(d*x+c)**2,x)

[Out]

Integral(sqrt(a*(sec(c + d*x) + 1))*tan(c + d*x)**2, x)

Maxima [F]

\[ \int \sqrt {a+a \sec (c+d x)} \tan ^2(c+d x) \, dx=\int { \sqrt {a \sec \left (d x + c\right ) + a} \tan \left (d x + c\right )^{2} \,d x } \]

[In]

integrate((a+a*sec(d*x+c))^(1/2)*tan(d*x+c)^2,x, algorithm="maxima")

[Out]

-1/6*(3*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(3/4)*(2*d*integrate((((cos(6*d*x +
 6*c)*cos(2*d*x + 2*c) + 2*cos(4*d*x + 4*c)*cos(2*d*x + 2*c) + cos(2*d*x + 2*c)^2 + sin(6*d*x + 6*c)*sin(2*d*x
 + 2*c) + 2*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + sin(2*d*x + 2*c)^2)*cos(5/2*arctan2(sin(2*d*x + 2*c), cos(2*d*
x + 2*c))) + (cos(2*d*x + 2*c)*sin(6*d*x + 6*c) + 2*cos(2*d*x + 2*c)*sin(4*d*x + 4*c) - cos(6*d*x + 6*c)*sin(2
*d*x + 2*c) - 2*cos(4*d*x + 4*c)*sin(2*d*x + 2*c))*sin(5/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*cos(1
/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - ((cos(2*d*x + 2*c)*sin(6*d*x + 6*c) + 2*cos(2*d*x + 2*c)
*sin(4*d*x + 4*c) - cos(6*d*x + 6*c)*sin(2*d*x + 2*c) - 2*cos(4*d*x + 4*c)*sin(2*d*x + 2*c))*cos(5/2*arctan2(s
in(2*d*x + 2*c), cos(2*d*x + 2*c))) - (cos(6*d*x + 6*c)*cos(2*d*x + 2*c) + 2*cos(4*d*x + 4*c)*cos(2*d*x + 2*c)
 + cos(2*d*x + 2*c)^2 + sin(6*d*x + 6*c)*sin(2*d*x + 2*c) + 2*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + sin(2*d*x +
2*c)^2)*sin(5/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*
c) + 1)))/(((2*(2*cos(4*d*x + 4*c) + cos(2*d*x + 2*c))*cos(6*d*x + 6*c) + cos(6*d*x + 6*c)^2 + 4*cos(4*d*x + 4
*c)^2 + 4*cos(4*d*x + 4*c)*cos(2*d*x + 2*c) + cos(2*d*x + 2*c)^2 + 2*(2*sin(4*d*x + 4*c) + sin(2*d*x + 2*c))*s
in(6*d*x + 6*c) + sin(6*d*x + 6*c)^2 + 4*sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + sin(2*d*x
+ 2*c)^2)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))^2 + (2*(2*cos(4*d*x + 4*c) + cos(2*d*x + 2*
c))*cos(6*d*x + 6*c) + cos(6*d*x + 6*c)^2 + 4*cos(4*d*x + 4*c)^2 + 4*cos(4*d*x + 4*c)*cos(2*d*x + 2*c) + cos(2
*d*x + 2*c)^2 + 2*(2*sin(4*d*x + 4*c) + sin(2*d*x + 2*c))*sin(6*d*x + 6*c) + sin(6*d*x + 6*c)^2 + 4*sin(4*d*x
+ 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + sin(2*d*x + 2*c)^2)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d
*x + 2*c) + 1))^2)*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)), x) - 4*d*integra
te((((cos(6*d*x + 6*c)*cos(2*d*x + 2*c) + 2*cos(4*d*x + 4*c)*cos(2*d*x + 2*c) + cos(2*d*x + 2*c)^2 + sin(6*d*x
 + 6*c)*sin(2*d*x + 2*c) + 2*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + sin(2*d*x + 2*c)^2)*cos(3/2*arctan2(sin(2*d*x
 + 2*c), cos(2*d*x + 2*c))) + (cos(2*d*x + 2*c)*sin(6*d*x + 6*c) + 2*cos(2*d*x + 2*c)*sin(4*d*x + 4*c) - cos(6
*d*x + 6*c)*sin(2*d*x + 2*c) - 2*cos(4*d*x + 4*c)*sin(2*d*x + 2*c))*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*
x + 2*c))))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - ((cos(2*d*x + 2*c)*sin(6*d*x + 6*c) + 2
*cos(2*d*x + 2*c)*sin(4*d*x + 4*c) - cos(6*d*x + 6*c)*sin(2*d*x + 2*c) - 2*cos(4*d*x + 4*c)*sin(2*d*x + 2*c))*
cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - (cos(6*d*x + 6*c)*cos(2*d*x + 2*c) + 2*cos(4*d*x + 4*c)
*cos(2*d*x + 2*c) + cos(2*d*x + 2*c)^2 + sin(6*d*x + 6*c)*sin(2*d*x + 2*c) + 2*sin(4*d*x + 4*c)*sin(2*d*x + 2*
c) + sin(2*d*x + 2*c)^2)*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*sin(1/2*arctan2(sin(2*d*x + 2*c
), cos(2*d*x + 2*c) + 1)))/(((2*(2*cos(4*d*x + 4*c) + cos(2*d*x + 2*c))*cos(6*d*x + 6*c) + cos(6*d*x + 6*c)^2
+ 4*cos(4*d*x + 4*c)^2 + 4*cos(4*d*x + 4*c)*cos(2*d*x + 2*c) + cos(2*d*x + 2*c)^2 + 2*(2*sin(4*d*x + 4*c) + si
n(2*d*x + 2*c))*sin(6*d*x + 6*c) + sin(6*d*x + 6*c)^2 + 4*sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x +
2*c) + sin(2*d*x + 2*c)^2)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))^2 + (2*(2*cos(4*d*x + 4*c)
 + cos(2*d*x + 2*c))*cos(6*d*x + 6*c) + cos(6*d*x + 6*c)^2 + 4*cos(4*d*x + 4*c)^2 + 4*cos(4*d*x + 4*c)*cos(2*d
*x + 2*c) + cos(2*d*x + 2*c)^2 + 2*(2*sin(4*d*x + 4*c) + sin(2*d*x + 2*c))*sin(6*d*x + 6*c) + sin(6*d*x + 6*c)
^2 + 4*sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + sin(2*d*x + 2*c)^2)*sin(1/2*arctan2(sin(2*d*
x + 2*c), cos(2*d*x + 2*c) + 1))^2)*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)),
 x) + 2*d*integrate((((cos(6*d*x + 6*c)*cos(2*d*x + 2*c) + 2*cos(4*d*x + 4*c)*cos(2*d*x + 2*c) + cos(2*d*x + 2
*c)^2 + sin(6*d*x + 6*c)*sin(2*d*x + 2*c) + 2*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + sin(2*d*x + 2*c)^2)*cos(1/2*
arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + (cos(2*d*x + 2*c)*sin(6*d*x + 6*c) + 2*cos(2*d*x + 2*c)*sin(4*d
*x + 4*c) - cos(6*d*x + 6*c)*sin(2*d*x + 2*c) - 2*cos(4*d*x + 4*c)*sin(2*d*x + 2*c))*sin(1/2*arctan2(sin(2*d*x
 + 2*c), cos(2*d*x + 2*c))))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - ((cos(2*d*x + 2*c)*sin
(6*d*x + 6*c) + 2*cos(2*d*x + 2*c)*sin(4*d*x + 4*c) - cos(6*d*x + 6*c)*sin(2*d*x + 2*c) - 2*cos(4*d*x + 4*c)*s
in(2*d*x + 2*c))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - (cos(6*d*x + 6*c)*cos(2*d*x + 2*c) + 2
*cos(4*d*x + 4*c)*cos(2*d*x + 2*c) + cos(2*d*x + 2*c)^2 + sin(6*d*x + 6*c)*sin(2*d*x + 2*c) + 2*sin(4*d*x + 4*
c)*sin(2*d*x + 2*c) + sin(2*d*x + 2*c)^2)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*sin(1/2*arctan
2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))/(((2*(2*cos(4*d*x + 4*c) + cos(2*d*x + 2*c))*cos(6*d*x + 6*c) + co
s(6*d*x + 6*c)^2 + 4*cos(4*d*x + 4*c)^2 + 4*cos(4*d*x + 4*c)*cos(2*d*x + 2*c) + cos(2*d*x + 2*c)^2 + 2*(2*sin(
4*d*x + 4*c) + sin(2*d*x + 2*c))*sin(6*d*x + 6*c) + sin(6*d*x + 6*c)^2 + 4*sin(4*d*x + 4*c)^2 + 4*sin(4*d*x +
4*c)*sin(2*d*x + 2*c) + sin(2*d*x + 2*c)^2)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))^2 + (2*(2
*cos(4*d*x + 4*c) + cos(2*d*x + 2*c))*cos(6*d*x + 6*c) + cos(6*d*x + 6*c)^2 + 4*cos(4*d*x + 4*c)^2 + 4*cos(4*d
*x + 4*c)*cos(2*d*x + 2*c) + cos(2*d*x + 2*c)^2 + 2*(2*sin(4*d*x + 4*c) + sin(2*d*x + 2*c))*sin(6*d*x + 6*c) +
 sin(6*d*x + 6*c)^2 + 4*sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + sin(2*d*x + 2*c)^2)*sin(1/2
*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))^2)*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x +
2*c) + 1)^(1/4)), x) - arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/
2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2
*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1) + arctan2((cos(2*d*x + 2*c)^2 + s
in(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (c
os(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2
*d*x + 2*c) + 1)) - 1))*sqrt(a) - 8*sqrt(a)*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))/((cos(2*
d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(3/4)*d)

Giac [F]

\[ \int \sqrt {a+a \sec (c+d x)} \tan ^2(c+d x) \, dx=\int { \sqrt {a \sec \left (d x + c\right ) + a} \tan \left (d x + c\right )^{2} \,d x } \]

[In]

integrate((a+a*sec(d*x+c))^(1/2)*tan(d*x+c)^2,x, algorithm="giac")

[Out]

sage0*x

Mupad [F(-1)]

Timed out. \[ \int \sqrt {a+a \sec (c+d x)} \tan ^2(c+d x) \, dx=\int {\mathrm {tan}\left (c+d\,x\right )}^2\,\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}} \,d x \]

[In]

int(tan(c + d*x)^2*(a + a/cos(c + d*x))^(1/2),x)

[Out]

int(tan(c + d*x)^2*(a + a/cos(c + d*x))^(1/2), x)